检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪荣贵[1] 吴昊[1,2] 方帅[1] 杨万挺[1]
机构地区:[1]合肥工业大学计算机与信息学院,安徽合肥230009 [2]合肥师范学院计算机科学与技术系.安徽合肥230061
出 处:《中国科学技术大学学报》2010年第8期841-847,共7页JUSTC
基 金:国家自然科学基金(60705015,60575023);安徽省自然科学基金(070412054)资助
摘 要:现有二维Otsu图像分割算法的阈值识别函数是通过计算类间离散度矩阵的迹来实现的,没有考虑目标和背景这两类像素自身的内聚性且计算复杂度高,为此提出一种新的阈值识别函数设计算法.该算法先统计待分割图像目标类和背景类各自类内的绝对差,相加得到总体类内绝对差之和;再统计目标类和背景类两类之间的总体平均离差;然后把总体类内绝对差和类间总体离差的商式作为阈值识别函数.实验结果表明,与现有的识别函数相比,利用新构造的阈值识别函数来自适应寻优阈值,从主观上和客观上都取得了较好的分割效果,而且计算量较小.The threshold recognition function of existing two-dimensional Otsu image segmentation algorithms is based on the trace count of between-cluster scattered measure matrix but they do not consider the cohesiveness of foreground and background pixels themselves and are too complex. Therefore, a novel algorithm with a new threshold recognition function was proposed. The algorithm counted the absolute differences regarding the class of object and background of an object image and added them up to obtain the sum of total within-cluster absolute difference. Finally the algorithm set the quotient of the sum of total within-cluster absolute difference and the total deviation as the threshold recognition function. Experiment results show the efficiency in segmentation and low cost in computation of the proposed algorithm with a newly defined threshold recognition function by subjectively and objectively comparing to the existing threshold recognition functions.
关 键 词:图像分割 二维OTSU法 绝对差 离差 阈值识别函数
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46