检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]香港理工大学中文及双语学系
出 处:《中文信息学报》2010年第5期56-61,共6页Journal of Chinese Information Processing
摘 要:情感文本分类(简称情感分类)是一种面向主观信息分类的文本分类任务。目前,由于其广泛的应用前景,该任务在自然语言处理研究领域中得到了普遍关注,相继出现多种用于情感文本分类的有监督的分类方法。该文具体研究四种不同的分类方法在中文情感分类上的应用,并且采用一种基于Stacking的组合分类方法,用以组合不同的分类方法。实验结果表明,该组合方法在所有领域都能够获得比最好基分类方法更好的分类效果。从而克服了分类方法领域依赖的困境(不同领域需要选择不同基分类方法才能获得更好的分类结果)。Sentiment-based text categorization (for short, sentiment classification) is a task of classifying text according to the subjective information in the text. Nowadays, it has been closely studied in the research field of natural language processing (NLP) due to its wide real applications. As a result, many supervised machine learning clas- sification approaches have been applied to this task. In this paper, we research on four classification approaches and propose a new combination method based on stacking to combine these four approaches. Experimental results show that our combination method achieves better performances than the best single one. Therefore, this combination method can avoid selecting a suitable classification approach according to different domains.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3