POSITIVE SOLUTIONS FOR WEAKLY COUPLED NONLINEAR ELLIPTIC SYSTEMS  被引量:1

POSITIVE SOLUTIONS FOR WEAKLY COUPLED NONLINEAR ELLIPTIC SYSTEMS

在线阅读下载全文

作  者:龙静 杨健夫 

机构地区:[1]Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences [2]Graduate School,Chinese Academy of Sciences [3]Department of Mathematics,Jiangxi Normal University

出  处:《Acta Mathematica Scientia》2010年第5期1577-1592,共16页数学物理学报(B辑英文版)

基  金:supported by National Natural Science Foundations of China(10631030,10961016)

摘  要:In this article, we consider the existence of positive solutions for weakly coupled nonlinear elliptic systems {-△u+u=(1+a(x))|u|P-1u+μ|u|a-2u|v|β+λv in Rn,-△u+u=(1+b(x))|v|p-1v+μ|u|a|v|β-2v+λu in Rn To find nontrivial solutions, we first investigate autonomous systems. In this case, results of bifurcation from semi-trivial solutions are obtained by the implicit function theorem. Next, the existence of positive solutions of problem (0.1) is obtained by variational methods.In this article, we consider the existence of positive solutions for weakly coupled nonlinear elliptic systems {-△u+u=(1+a(x))|u|P-1u+μ|u|a-2u|v|β+λv in Rn,-△u+u=(1+b(x))|v|p-1v+μ|u|a|v|β-2v+λu in Rn To find nontrivial solutions, we first investigate autonomous systems. In this case, results of bifurcation from semi-trivial solutions are obtained by the implicit function theorem. Next, the existence of positive solutions of problem (0.1) is obtained by variational methods.

关 键 词:Elliptic system in RN positive solution BIFURCATION variational method 

分 类 号:O175.25[理学—数学] O469[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象