GRADIENT ESTIMATES FOR POSITIVE SMOOTH f-HARMONIC FUNCTIONS  被引量:3

GRADIENT ESTIMATES FOR POSITIVE SMOOTH f-HARMONIC FUNCTIONS

在线阅读下载全文

作  者:陈立 陈文艺 

机构地区:[1]Academy of Mathematics and Systems Science,Chinese Academy of Sciences [2]School of Mathematics and Statistics,Wuhan University

出  处:《Acta Mathematica Scientia》2010年第5期1614-1618,共5页数学物理学报(B辑英文版)

基  金:supported by NSFC (10471108,10631020)

摘  要:For Riemannian manifolds with a measure, we study the gradient estimates for positive smooth f-harmonic functions when the ∞-Bakry-Emery Ricci tensor and Ricci tensor are bounded from below, generalizing the classical ones of Yau (i.e., when : is constant).For Riemannian manifolds with a measure, we study the gradient estimates for positive smooth f-harmonic functions when the ∞-Bakry-Emery Ricci tensor and Ricci tensor are bounded from below, generalizing the classical ones of Yau (i.e., when : is constant).

关 键 词:gradient estimate f-harmonic function Bakry-Emery Ricci tensor 

分 类 号:O174.3[理学—数学] TP391.41[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象