机构地区:[1]State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China. [2]Graduate School of the Chinese Academy of Sciences, Beijing 100039, China [3]Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27517, USA
出 处:《Journal of Environmental Sciences》2010年第10期1491-1499,共9页环境科学学报(英文版)
基 金:supported by the National Natural Science Foundation of China(No.40825004,40730529)
摘 要:To evaluate the response of phytoplankton from Lake Taihu to different types of nutrients, the phytoplankton responses were measured after adding inorganic nitrogen (N) and phosphorus (P) or decomposed algal scum (Microcystis spp.) into the lake water. Both types of nutrients promoted an increase in phytoplankton biomass as determined by chlorophyll a and algal wet weight. The addition of decomposed algal scum resulted in a significantly greater phytoplankton response than the addition of inorganic N and P alone. The dissolved inorganic N and P in the inorganic nutrient treatment were found not limit phytoplankton growth. The higher algal biomass obtained in the treatment with decomposed algal scum indicated the importance of other organic nutrients besides N and P such as trace elements, as well as the importance of the form of N since the levels of ammonia nitrogen (NH4^+-N) from the decomposed algal treatment were actually higher than that of the inorganic N and P addition. Microcystis spp. (Cyanobacteria), Scenedesmus spp. (Chlorophyta) and Synechocystis spp. (Cyanobacteria) were the dominant taxa in the control, inorganic N and P treatment, and the decomposed algal scum treatment, respectively. Microcystis never bloomed in response to both types of nutrient additions indicating that the bloom propagation is not solely related to nutrient additions, but may be related to the absence of selective grazing from zooplankton.To evaluate the response of phytoplankton from Lake Taihu to different types of nutrients, the phytoplankton responses were measured after adding inorganic nitrogen (N) and phosphorus (P) or decomposed algal scum (Microcystis spp.) into the lake water. Both types of nutrients promoted an increase in phytoplankton biomass as determined by chlorophyll a and algal wet weight. The addition of decomposed algal scum resulted in a significantly greater phytoplankton response than the addition of inorganic N and P alone. The dissolved inorganic N and P in the inorganic nutrient treatment were found not limit phytoplankton growth. The higher algal biomass obtained in the treatment with decomposed algal scum indicated the importance of other organic nutrients besides N and P such as trace elements, as well as the importance of the form of N since the levels of ammonia nitrogen (NH4^+-N) from the decomposed algal treatment were actually higher than that of the inorganic N and P addition. Microcystis spp. (Cyanobacteria), Scenedesmus spp. (Chlorophyta) and Synechocystis spp. (Cyanobacteria) were the dominant taxa in the control, inorganic N and P treatment, and the decomposed algal scum treatment, respectively. Microcystis never bloomed in response to both types of nutrient additions indicating that the bloom propagation is not solely related to nutrient additions, but may be related to the absence of selective grazing from zooplankton.
关 键 词:PHYTOPLANKTON inorganic nutrients decomposed algal scum
分 类 号:X17[环境科学与工程—环境科学] TQ421.36[化学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...