检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学航天航空学院热科学与动力工程教育部重点实验室,北京100084 [2]南京航空航天大学能源与动力学院,南京210016
出 处:《物理学报》2010年第10期7129-7134,共6页Acta Physica Sinica
基 金:国家重点基础研究发展计划(批准号:2007CB206901)资助的课题~~
摘 要:基于热质理论,类比经典力学,给出了热质运动遵循的Hamilton原理以及相应的导热Lagrange方程.由于考虑了热质动能,热质运动的Hamilton原理有望应用于非Fourier效应的讨论,在忽略热质动能时,回归到Fourier热学.应用Lagrange方程对含内热源一维瞬态导热问题进行了近似求解,计算结果与解析解符合较好.从分析力学的角度对传热理论以及热学与力学的统一做了新的阐释,指出了现有文献中采用分析力学方法讨论导热问题时存在的某些不足,为导热问题的近似求解提供了新的思路,同时也说明了热质和热质能等热学新概念的合理性。Based on thermomass theory,the Hamilton's principle as well as the Lagrangian equations governing the motion of thermomass were established by methods analogous to those of classical mechanics.With the kinetic energy of thermomass taken into consideration,the Hamilton's principle for thermomass is expected to be capable of dealing with non-Fourier phenomena.When the kinetic energy is small enough to be ignored,the principle gets back to Fourier transfer.The application of Lagrangian equations was illustrated by the approximate solution of a 1D transient heat conduction problem with heat source.The unification of thermal and mechanical theories was demonstrated from the perspective of analytical mechanics,the drawbacks of existing theory are discussed,a new way to the approximate solution of heat transfer problem was suggested,and in the meantime the concepts of thermomass and energy of thermomass were to some extent justified.
关 键 词:热质 热质能 HAMILTON原理 LAGRANGE方程
分 类 号:TK124[动力工程及工程热物理—工程热物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31