基于稀疏模型的Bandelet图像去噪方法  被引量:4

Image Denoising Based on the Sparse Land Using Redundant Bandelet Transform

在线阅读下载全文

作  者:李恒建[1,2] 张家树[1] 陈怀新[3] 

机构地区:[1]西南交通大学信号与信息处理四川省重点实验室,四川成都610031 [2]山东省计算中心山东省计算机网络重点实验室,山东济南250014 [3]中国电子科技集团公司第10研究所,四川成都610036

出  处:《铁道学报》2010年第5期108-113,共6页Journal of the China Railway Society

摘  要:提出一种基于Bandelet变换的图像去噪方法,以提高高噪声方差的图像去噪效果。Bandelet变换的核心是Lagrangian函数代价项的准确选取,本文从图像基追踪稀疏模型表示原理和图像阈值去噪方法的内在关系入手,重新定义Lagrangian函数,从而使图像稀疏去噪模型含义更明确,计算更简单。在去噪过程中,首先采用二维平移不变小波变换把图像分解为高频子带;然后用局部Bandelet块估计Bayes阈值确定Lagrangian函数的代价因子,从而对各个高频实施Bandelet化;最后对高频图像系数Bayes软阈值收缩实现图像去噪。国际标准中几何特征明显图像测试表明:在高斯白噪声的方差低于502时,本文方法的去噪效果和目前最好方法的效果相当;当噪声的方差等于或者高于502时,本文去噪方法效果更好。To improve the efficiency of image denoising at the high Gaussian white noise level,a novel scheme is proposed by combining with the second redundant Bandelet transform version based on the Sparse Land-Basis Pursuit.Starting from the interrelation between Basis Pursuit denoising and threshold denoising with the shrinkage method,the Lagrangian cost function is renewed to minimize the influence of noises and have clearer meanings,and also lead to reduction of computation complexity.There are three steps in the image denoising process.Firstly,translation of invariant 2D wavelets is used to obtain the redundant Bandelet transform version.Secondly,during finding the best geometrical flow and optimal quadtree segments,the cost term of Lagrangian is confirmed by the Bayes estimator.Thirdly,Bayes soft-threshold shrinkage denoising in the bandelet transform domain is implemented.This leads to the state-of-the-art denoising performance,equivalent and sometimes surpassing recently published leading alternative denoising methods,especially as the noise variance is equal to and larger than 502.

关 键 词:图像去噪 稀疏模型 冗余Bandelet变换 基追踪 Bayes阈值 

分 类 号:TN911.7[电子电信—通信与信息系统] TP391.4[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象