检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]黄淮学院,河南驻马店463000
出 处:《商丘职业技术学院学报》2010年第5期17-19,共3页JOURNAL OF SHANGQIU POLYTECHNIC
摘 要:给出以Rolle定理为基础,用不同构造辅助函数的方法来证明Lagrange定理,强调了证明Lagrange定理过程中辅助函数构造的思维过程.To prove that Lagrange theorem on the base of the Rolle theorem in different ways of the auxiliary function.It explains how the auxiliary function is constructed in the process of proving the Lagrange theorem,and stresses the thinking process.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28