检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]同济大学土木工程学院,上海200092 [2]江苏大学理学院,镇江212013
出 处:《力学季刊》2010年第3期401-405,共5页Chinese Quarterly of Mechanics
摘 要:将一维对流扩散方程的解析解作为N-S方程中对流速度插值函数,可以较为精确地反映该单元内部的流动情况,并且自然地引入了对流项的迎风效应,从而避免了传统处理数值振荡方法中附加的稳定项。同时文中运用分裂算法求解N-S方程组,避免了BB(Babuska-Brezzi)条件对于速度压强插值函数阶数的限制,使得对流项插值函数的构造简单易行。构造了一种基于流动条件插值的平面四边形流体单元,并编制了相应的计算程序。详细给出了基于流动条件插值函数的构造过程,给出了分裂算法的计算步骤和公式,继而通过数值算例验证了所构造单元的有效性和准确性,并验证了算法的正确性。The analytical solution of one-dimensional advection - diffusion equation was adopted as the interpolation function of the advection velocity in Navier Stokes equations. The flow condition of element is presented more exactly, and the up-wind effect can be introduced naturally, thus the additional stability term result from numerical computation is avoided. To avoid Babuska-Brezzi condition and simplify the interpolation of advection term, the split scheme was used to solve Navier Stokes equations. A two dimension four-node bilateral fluid element was constructed and a corresponding program was developed. The solution procedure was discussed in detail and the numerical example solution was given to illustrate the capabilities of the procedure.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249