基于FLS-SVM背景预测的红外弱小目标检测  被引量:17

Detection of Small Target in Infrared Image Based on Background Predication by FLS-SVM

在线阅读下载全文

作  者:吴一全[1,2] 尹丹艳[1] 

机构地区:[1]南京航空航天大学信息科学与技术学院,江苏南京210016 [2]南京大学计算机软件新技术国家重点实验室,江苏南京210093

出  处:《光学学报》2010年第10期2806-2811,共6页Acta Optica Sinica

基  金:国家自然科学基金(60872065);南京大学计算机软件新技术国家重点实验室开放基金(KFKT2010B17)资助课题

摘  要:提出了一种基于模糊最小二乘支持向量机(FLS-SVM)进行背景预测、利用模糊Tsallis-Havrda-Charvat熵实现阈值分割的红外弱小目标检测方法。首先采用FLS-SVM对训练样本进行学习得到回归函数,并以此预测红外图像中的背景;然后将原始图像与预测图像相减得到残差图像,并提出基于模糊Tsallis-Havrda-Charvat熵的阈值选取算法分割残差图像,将小目标和噪声从残差背景中分割出来;最后利用目标灰度的平稳性和运动轨迹的连续性进一步检测出真实的小目标。给出了实验结果及分析,并与基于最小二乘支持向量机(LS-SVM)以及基于最小二乘的背景预测方法的检测结果进行了比较。结果表明,该方法具有更高的检测概率和信噪比增益,优于上述基于背景预测的红外小目标检测方法。A detection method of small target in infrared image is proposed,which is based on the background predication by fuzzy least squares support vector machine(FLS-SVM) and threshold segmentation by fuzzy Tsallis-Havrda-Charvat entropy.Firstly,the fitting function is obtained from the training samples by using FLS-SVM and the background in infrared image is predicted.Then,the predicted image subtracted from the source image gives the residual-error image.The residual-error image is segmented by the proposed threshold selection method based on fuzzy Tsallis-Havrda-Charvat entropy so as to separate small target and noise from the residual background.Finally,the true small target is further detected based on the stability of the target gray and the consistency of target trajectory.The experimental results are given and analyzed.They are compared with the detection results of the background predication methods based on LS-SVM or least squares.The results show that the proposed method has higher detection probability and the gain of signal-to-noise ratio(GSNR) and it is superior to the above-mentioned methods.

关 键 词:图像处理 红外小目标检测 模糊支持向量机 残差图像 模糊Tsallis-Havrda-Charvat熵 

分 类 号:TN911.73[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象