检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王文友[1]
机构地区:[1]徐州师范大学数学科学学院,江苏徐州221116
出 处:《徐州师范大学学报(自然科学版)》2010年第3期30-34,共5页Journal of Xuzhou Normal University(Natural Science Edition)
摘 要:应用Fourier变换法,求解位移满足的Laplace方程,获得位移的一般性解.然后利用位移解与应力之间的关系式和边界条件,导出一组对偶积分方程组.引入积分变换,使对偶积分方程组退耦正则化为含对数核的第一类Fredholm积分方程,并严格证明了两者的等价性;给出对偶积分方程组的封闭解,并严格证明了解的存在性和唯一性.最后给出弹性层纵向剪切问题的应力场.By applying Fourier transformation to solve the Laplace equation about displacement,the general solutions of displacement are obtained. And according to the relation between displacement and stress for longitudinal shear and boundary conditions,the dual integral equations are deduced. The dual integral equations are decoupled and regularized into the first kind of Fredholm canocinal integral equations with logarithmic kernel by using integral transformation,and the equivalence of them are proved exactly. Then the enclosed solutions of dual integral equations are given,and the existence and uniqueness of solutions are proved. Simultaneously,the stress fields for the problem of longitudinal shear of elastic layer are given.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.133.22