检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]污染控制与资源化研究国家重点实验室,南京大学水科学系,江苏南京210093
出 处:《水科学进展》2010年第5期613-621,共9页Advances in Water Science
基 金:国家自然科学基金资助项目(40725010;40672160)~~
摘 要:集合卡尔曼滤波(Ensemble Kalman Filter,EnKF)作为一种有效的数据同化方法,在众多数值实验中体现优势的同时,也暴露了它使用小集合估计协方差情况下精度较低的缺陷。为了降低取样噪声对协方差估计的干扰并提高滤波精度,应用局域化函数对小集合估计的协方差进行修正,即在协方差矩阵中以舒尔积的形式增加空间距离权重以限制远距离相关。在一个二维理想孔隙承压含水层模型中的运行结果表明,局域化对集合卡尔曼滤波估计地下水参数的修正十分有效,局域化可以很好地过滤小集合估计中噪声的影响,节省计算量的同时又可以防止滤波发散。相关长度较小的水文地质参数(如对数渗透系数)更容易受到噪声的干扰,更有必要进行局域化修正。The ensemble Kalman filter (EnKF) is a sophisticated sequential data assimilation method.The EnKF has proven to be efficient handling of strong nonlinear dynamics and large state spaces.However,EnKF uses a relatively small ensemble of forecasts to estimate the forecast error covariance,which can introduce spurious correlations that lead to excessive decrease of the ensemble variance and possibly filter divergence.The spurious correlations can be handled by a localization method.In the method,the ensemble covariance matrix is multiplied with a specified correlation matrix through a Schur product (entry-wise multiplication),which can effectively truncate the long-range spurious correlations produced by the limited ensemble size.The revised EnKF is tested numerically for a two-dimensional synthetic case.The result shows that localization can largely reduce the sampling errors due to small ensembles size with high efficiency,as well as can avoid filter divergence to a large extent.Applications of localization for the EnKF are also necessary to conduct localized corrections for the estimation of hydrogeological parameters with relatively small values of the correlation length.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.100.179