检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机应用》2010年第11期2974-2976,3137,共4页journal of Computer Applications
基 金:国家自然科学基金资助项目(60672135)
摘 要:为了提高工业检测中图像匹配精度和速度,提出了一种用于二维目标匹配的新算法——模糊随机广义霍夫变换(FRGHT)。此算法结合了模糊推理系统(FIS)和随机广义霍夫变换(RGHT)。模糊推理系统引入模糊集合概念,计算待配准图像中边缘点对配准参数的投票,从而可以抑制噪声,解决扭曲问题,提高了匹配精度;随机抽取待配准图像中边缘点进行投票,实现了多对一的映射,从而减少了内存需求,提高计算速度。实验表明,该方法计算速度快,匹配精度高,不受噪声污染、扭曲、遮挡、混乱等情况的影响。A new algorithm called Fuzzy Randomized Generalized Hough Transform (FRGHT) was proposed to improve the industrial detection accuracy and the speed of image matching in this paper. This algorithm combined Fuzzy Inference System (FIS) and Random Generalized Hough Transform (RGHT), in which fuzzy sets of FIS were used to compute the votes of edge points of reference image for registration parameters, can effectively solve the problem of noise and distortion and improves the matching accuracy; and the random sampling giving a many-to-one mapping reduces the memory requirements and improves the matching speed. The experiments demonstrate that the proposed algorithm exhibits faster speed and higher accuracy than RGHT and Fuzzy GHT (FGHT), moreover it is robust to the serious noise pollution, distortion, occlusions, clutter, etc.
关 键 词:目标匹配 模糊推理系统 HOUGH变换 SOBEL算子 CANNY算子
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46