检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨红[1,2] 高月芳[3] 罗飞[2] 许玉格[2]
机构地区:[1]广州大学物理与电子工程学院,广东广州510006 [2]华南理工大学自动化科学与工程学院,广东广州510640 [3]深圳信息职业技术学院软件工程系,广东深圳518029
出 处:《信息与控制》2010年第5期553-558,共6页Information and Control
基 金:国家自然科学基金资助项目(60774032);教育部高等学校博士学科点专项科研基金资助项目(新教师基金课题)(20070561006);广东省自然科学基金博士启动项目(9451802904003344,9451064101002853)
摘 要:针对非线性系统的控制问题,提出一种基于神经网络辨识的单步预测控制算法.算法在自回归小波神经网络的基础上,利用混沌机制消除了神经网络易陷入局部极值的缺点.采用自适应性学习率,提高神经网络的收敛能力和速度.以该神经网络为预测模型,引入输出反馈和偏差校正克服预测误差,以此构造一步加权预测控制性能指标.然后采用Brent一维搜索方法求取控制律,Brent法无需任何相关的导数信息,需调整的参数少,使得Brent法适合实时控制.仿真研究说明了该非线性预测控制器的有效性.A one-step-ahead predictive control algorithm via neural network identification is proposed for the control of nonlinear systems.The algorithm eliminates the defect that neural networks are prone to be trapped in local minimum through utilizing chaos mechanism based on self-recurrent wavelet neural networks.Then adaptive learning ratio is adopted to enhance convergence ability and speed of neural networks.As the neural network being predictive model and the output feedback and deviation rectification being introduced to reduce predictive error,a one-step-ahead weighted predictive control performance index is formulated.Lastly,the control law is derived via Brent optimization method which is efficient and reliable in one dimension search without knowing any relative derivative information.The method has less parameters to choose,which is very suitable for real-time control.The simulation shows that the presented method is effective.
关 键 词:预测控制 混沌 非线性系统 自适应自回归小波神经网络
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171