检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《苏州大学学报(自然科学版)》2010年第4期9-13,共5页Journal of Soochow University(Natural Science Edition)
摘 要:讨论了基于贝叶斯方法进行模型选择与异常点识别时两者之间的相互影响,建议模型与异常点应结合起来同时识别.针对二值数据,采用引入隐变量的数据扩增方法进行异常点识别,并且给出了基于MCMC方法计算后验概率来进行模型和异常点同时识别的具体过程.In this paper we discuss the interaction between model selection and outlier identification based on bayesian method.We suggest that model selection and outlier identification should be identified simultaneously.For binary data,data augmentation method is introduced to identify the outlier,and we suggest a method for simultaneous model selection and outlier identification based on posterior probabilities computed by MCMC method.
关 键 词:二值数据 隐变量 模型选择 异常点识别 GIBBS抽样
分 类 号:O212[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117