检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《软件导刊》2010年第10期64-65,共2页Software Guide
摘 要:关联规则在数据挖掘中扮演着十分重要的角色,而Apriori算法和FP-growth算法是当前关联规则中两大主要算法。其中Apriori算法的主要开支是产生大量候选项集和重复遍历数据库,FP-growth算法的主要开支是重复创建和遍历条件FP树。在介绍两种算法基础上,提出了一种新的算法,使Apriori算法产生的候选项集不是查找数据库而是查找FP-tree来确定是否为频繁项集。实际测试表明,在一定的条件下,新算法的效率高于原先的两种算法。
关 键 词:关联规则 频繁项集 FP-TREE APRIORI算法 FP-GROWTH算法
分 类 号:TP312[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145