A nuclear-encoded mitochondrial gene AtCIB22 is essential for plant development in Arabidopsis  被引量:1

A nuclear-encoded mitochondrial gene AtCIB22 is essential for plant development in Arabidopsis

在线阅读下载全文

作  者:Lihua Han Genji Qin Dingming Kang Zhangliang Chen Hongya Gu Li-Jia Qu 

机构地区:[1]College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094, China [2]National Laboratory of Protein Engineering and Plant Genetic Engineering, Peking University, Beijing 100871, China [3]The National Plant Gene Research Center (Beijing), Beijing 100101, China

出  处:《Journal of Genetics and Genomics》2010年第10期667-683,共17页遗传学报(英文版)

基  金:supported by the National Basic Research Program of China (No. 2009CB941503)

摘  要:Complex I (the NADH:ubiquinone oxidoreductase) of the mitochondrial respiratory chain is a complicated, multi-subunit, membrane- bound assembly and contains more than 40 different proteins in higher plants. In this paper, we characterize the Arabidopsis homologue (designated as AtCIB22) of the B22 subunit of eukaryotic mitochondriai Complex I. AtCIB22 is a single-copy gene and is highly con- served throughout eukaryotes. AtCIB22 protein is located in mitochondria and the AtC1B22 gene is widely expressed in different tissues. Mutant Arabidopsis plants with a disrupted AtC1B22 gene display pleiotropic phenotypes including shorter roots, smaller plants and de- layed flowering. Stress analysis indicates that the AtC1B22 mutants' seed germination and early seedling growth are severely inhibited by sucrose deprivation stress but more tolerant to ethanol stress. Molecular analysis reveals that in moderate knockdown AtCIB22 mutants, genes including cell redox proteins and stress related proteins are significantly up-regulated, and that in severe knockdown AtCIB22 mu- tants, the alternative respiratory pathways including NDA1, NDB2, AOXla and AtPUMP1 are remarkably elevated. These data demon- strate that AtCIB22 is essential for plant development and mitochondrial electron transport chains in Arabidopsis. Our findings also en- hance our understanding about the physiological role of Complex I in plants.Complex I (the NADH:ubiquinone oxidoreductase) of the mitochondrial respiratory chain is a complicated, multi-subunit, membrane- bound assembly and contains more than 40 different proteins in higher plants. In this paper, we characterize the Arabidopsis homologue (designated as AtCIB22) of the B22 subunit of eukaryotic mitochondriai Complex I. AtCIB22 is a single-copy gene and is highly con- served throughout eukaryotes. AtCIB22 protein is located in mitochondria and the AtC1B22 gene is widely expressed in different tissues. Mutant Arabidopsis plants with a disrupted AtC1B22 gene display pleiotropic phenotypes including shorter roots, smaller plants and de- layed flowering. Stress analysis indicates that the AtC1B22 mutants' seed germination and early seedling growth are severely inhibited by sucrose deprivation stress but more tolerant to ethanol stress. Molecular analysis reveals that in moderate knockdown AtCIB22 mutants, genes including cell redox proteins and stress related proteins are significantly up-regulated, and that in severe knockdown AtCIB22 mu- tants, the alternative respiratory pathways including NDA1, NDB2, AOXla and AtPUMP1 are remarkably elevated. These data demon- strate that AtCIB22 is essential for plant development and mitochondrial electron transport chains in Arabidopsis. Our findings also en- hance our understanding about the physiological role of Complex I in plants.

关 键 词:MITOCHONDRIA Complex I B22 subunit ethanol treatment alternative oxidase uncoupling protein 

分 类 号:Q949.405[生物学—植物学] S816.2[农业科学—饲料科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象