检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张小华[1]
出 处:《三峡大学学报(自然科学版)》2010年第5期32-35,共4页Journal of China Three Gorges University:Natural Sciences
基 金:湖北省教育厅重点科研项目(D200729002);三峡大学科学基金(KJ2009B058)
摘 要:Galerkin型无网格方法在求解不可压缩流动问题时,会遇到对流占优、速度-压力失耦等问题,本文基于CBS有限元方法的基本思想,提出了无网格CBS方法来解决上述问题.通过对平面Poiseuille流动的计算表明:无网格CBS方法在采用压力速度等线性基近似的情况下,当时间步长大于某个临界值时可很好地解决速度-压力失耦问题,且具有相当高的计算精度.The standard Galerkin meshfree method for incompressible flow may suffer from numerical instabilities due to the advection-dominated and the improper coupling of velocity and pressure.In order to eliminate these instabilities,based on characteristic-based split scheme in finite element framework,an element free characteristic-based split(EFCBS) method is developed.Meanwhile the presented method is applied to planar Poiseuille flow problem;and the numerical results indicate that the EFCBS method with equal low-order basis function approximation for velocity-pressure variables under the time-step more than a critical time-step can effectively avoid the pressure oscillations;moreover the method has good accuracy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.141.19