检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连轻工业学院数理教学部,辽宁大连116034
出 处:《大连轻工业学院学报》1999年第1期85-90,共6页Journal of Dalian Institute of Light Industry
摘 要:动态系统剧性延迟微分方程广泛应用于工程科学中。本文主要分析其改进问题和线性隐式Runge-Kutta插值法对刚性延迟微分方程的稳定性。提出改进问题和线性隐式单步插值法稳定性的充分条件。这些条件允许计算稳定域的边界轨迹。指出用恰当的稳定函数任意改进问题和任意线性隐式Runge-Kutta-Lagrange法是p(β)-稳定的,且线性隐式Runge-Kutta-Lagrange法比线性隐式Runge-Kutta-Hermite法具有更好的稳定性。Stiff delay differential equation is generally encountered in engineering dynamic systems. This paper discusses its modified problem and the stability of Runge-Kutta linear implicitinterpolation in solving this problem is investigated. The full condition about the stability of linearimplicit single-step inteoplation and its modification are proposed. This condition permits tocaculate the boundary locus of the stable range. It is proved that an arbitrary modified problemwith a suitable stable function and an arbitrny Runge-Kutta-Lagrange linear implicit methodarep (β)-stable. It is verified also that this Runge-Kutta-Lagrange method is more stable thanRunge-Kutta-Hermite linear implicit interpolation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145