检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱伟兴[1] 江辉[1] 陈全胜[2] 郭建光[1]
机构地区:[1]江苏大学电气信息工程学院,镇江212013 [2]江苏大学食品与生物工程学院,镇江212013
出 处:《农业机械学报》2010年第10期129-133,共5页Transactions of the Chinese Society for Agricultural Machinery
基 金:国家自然科学基金资助项目(30800666);江苏省自然科学基金资助项目(BK2009216)
摘 要:为提高利用近红外光谱技术快速检测梨可溶性固形物含量的精度和稳定性,结合区间偏最小二乘和遗传算法(iPLS-GA)来筛选校正模型中的特征光谱区和变量,通过交互验证法确定模型中的主成分因子数和筛选的变量,并以预测均方根误差(RMSEP)和相关系数(Rp)作为模型评价标准。试验结果显示:iPLS-GA最优模型包含5个光谱区、50个变量和10个主成分因子。最佳预测模型相关系数(Rp)和RMSEP分别为0.939 8和0.325 0,研究结果表明近红外光谱结合iPLS-GA算法可以准确、无损检测梨的可溶性固形物含量。In determination of soluble solids content(SSC) in pear by FT-NIR spectroscopy technique,in order to improve precision and robustness,interval partial least square coupled with genetic algorithm(iPLS-GA) was used to select the efficient spectral regions and variables in calibrating model.Selections of spectral regions and variables were implemented by the cross-validation.The performance of the final model was evaluated according to the root mean square error of prediction(RMSEP) and correlation coefficient(Rp) in prediction sets.The results of final model were achieved as follow: the optimal iPLS-GA model was obtained with 10 PLS factors,when 5 spectral regions and 50 variables were selected,respectively.Rp and RMSEP of optimal model was 0.9398 and 0.3250 respectively by a prediction set.This work demonstrated that NIR spectroscopy with iPLS-GA could be applied successfully to determine the SSC in pear as a precise and nondestructive method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249