基于新时空融合的步态轮廓分割算法  被引量:1

Gait Contours Segmentation Algorithm Based on A New Spatio-Temporal Combination

在线阅读下载全文

作  者:徐中宇[1] 姜洪霖[1] 张忠波[2] 

机构地区:[1]长春工业大学计算机科学与工程学院,吉林长春130012 [2]吉林大学数学学院,吉林长春130012

出  处:《计算机仿真》2010年第10期202-206,共5页Computer Simulation

基  金:吉林省科技发展计划项目(20070562)

摘  要:从人体步态图像视频序列中,提取完整的人体区域是人体运动步态识别的一个重要环节。提出一种新的人体运动目标分割算法,无需小波反变换。结合背景减除法和帧间差分法所得到的二值结果来进行运动估计,对当前帧图像采用一阶小波变换,利用高阶线性插值算法将小波变换的LL分量扩展与当前帧图像同样的大小,采用分水岭分割算法把扩展后的LL分量图像分割成许多封闭而不重叠的小区域(空域分割),进行时空融合。可以在NLPR步态数据库中进行实验,结果表明,算法能够精确地识别完整的人体区域,拥有良好的抗噪性和适应性,进一步提高识别率。The effective extraction of human area from human-body moving gait image sequences is of great concern to human-body moving gait recognition.A new segmentation algorithm was proposed,the concept of the time-domain was afresh defined,the inverse transformation of the wavelet was unnecessary.The two value result which was gained by combining background subtraction and symmetric frame difference performed moving estimation,it was the new method of time-domain segmentation;the first order wavelet transform was used to the current frame image,used high order linear interpolation to extend the LL weight of wavelet transformation as the same size as the current frame image,watershed segmentation algorithm was used to divide the LL weight image which was extended into many closed and non-overlapping regions,it was space-domain segmentation;used spatio-temporal combination algorithm,maked the result of space-domain segmentation casting shadow to the result of time-domain segmentation,then gained the accurate area of human-body.The experiments were made on the NLPR gait database and the results proved that the algorithm can abstract the whole area of human-body precisely,owned the good robust noise and flexibility,and eventually improved the performance of gait recognition.

关 键 词:步态识别 分水岭分割 小波变换 时空融合 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象