检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安理工大学西北水资源与环境生态教育部重点实验室,陕西西安710048
出 处:《水资源与水工程学报》2010年第5期93-95,共3页Journal of Water Resources and Water Engineering
基 金:国家自然科学基金项目(50779052)
摘 要:水文要素的预测具有不确定性,为了提高水文要素预测精度,将水文要素的多个相关因素在建模时加以考虑。本文通过建立考虑多个相关因素的灰色GM(1,N)自记忆模型,并与BP神经网络建立组合预测模型。利用新疆墨玉县年蒸发量实测资料,建立灰色GM(1,5)自记忆神经网络组合模型。研究表明:该组合模型拟合和预测效果较满意。Hydrological elements forecasting model has been improved continuously.The prediction of hydrological elements has uncertainty,in order to improve the prediction accuracy,we consider more related factors when building model.Gray GM(1,N) self-memory model that consider more related factors was established,and then it was combined with BP neural network model.Based on the annual potential evaporation in Moyu County,Xinjiang,the paper established gray GM(1,5) self-memory and neural network.The result showed that draught and forecast effect of the combined model was more satisfactory.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28