基于微分进化的PCNN图像分割方法  被引量:4

Image Segmentation Method Based on PCNN with Differential Evolution

在线阅读下载全文

作  者:罗美淑[1] 刘世勇[2] 石磊[3,4] 

机构地区:[1]牡丹江师范学院计算机科学与技术系,黑龙江牡丹江157012 [2]黑龙江幼儿师范高等专科学校,黑龙江牡丹江157011 [3]黑龙江工程学院计算机科学与技术系,哈尔滨150050 [4]哈尔滨工程大学计算机科学与技术学院,哈尔滨150001

出  处:《计算机工程》2010年第21期225-227,共3页Computer Engineering

基  金:中国博士后科学基金资助项目(20060400809);黑龙江科技攻关基金资助项目(GZ07A106);黑龙江省教育厅科学技术研究基金资助项目(11551512)

摘  要:脉冲耦合神经网络(PCNN)是一种新型神经网络,可以应用于图像分割。然而在对PCNN的研究应用中,其模型参数的合理确定是个难点,这在很大程度上限制了PCNN的应用。针对这一问题,提出一种基于微分进化的PCNN图像分割方法。该方法使用微分进化算法来实现脉冲耦合神经网络参数的自动设定,并通过将其应用于图像分割,将分割结果与其他优秀分割方法比较,从而验证了该方案的正确性与可行性。The Pulse Coupled Neural Network(PCNN) is a new artificial neural networks model, and several PCNN structures for image segmentation are proposed depending on the model's potential. But it isn't a trivial task to define the relative parameters properly in the research of the theories and the applications of PCNN. As a contribution to this research field, this paper presents a new method for image segmentation based on differential evolution algorithm. Differential evolution algorithm as a new evolutionary algorithm can accomplish the automatic search of target parameter with its superior characteristic. Application of key parameters' automatic setting in image segmentation, and the comparison between this segmentation result and other segmentation methods, the correctness and advancement of this case are verified.

关 键 词:图像分割 脉冲耦合神经网络 微分进化算法 

分 类 号:TP338[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象