A Generalized Vector-valued Variational Principle in Fréchet Spaces  

A Generalized Vector-valued Variational Principle in Fréchet Spaces

在线阅读下载全文

作  者:Jing Hui QIU Xin Qing YANG 

机构地区:[1]Department of Mathematics, Suzhou University, Suzhou 215006, P. R. China

出  处:《Acta Mathematica Sinica,English Series》2010年第11期2145-2156,共12页数学学报(英文版)

基  金:Supported by National Natural Science Foundation of China (Grant No.10871141)

摘  要:In the framework of Frechet spaces, we give a generalized vector-valued Ekeland's variational principle, where the perturbation involves the subadditive functions of countable generating semi-norms. By modifying and developing the method of Cammaroto and Chinni, we obtain a density theorem on extremal points of the vector-valued variational principle, which extends and improves the related known results.In the framework of Frechet spaces, we give a generalized vector-valued Ekeland's variational principle, where the perturbation involves the subadditive functions of countable generating semi-norms. By modifying and developing the method of Cammaroto and Chinni, we obtain a density theorem on extremal points of the vector-valued variational principle, which extends and improves the related known results.

关 键 词:Locally convex space Fr^chet space vector-valued variational principle extremal point DENSITY 

分 类 号:O177.3[理学—数学] TU323.5[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象