检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学电子信息学院,陕西西安710072
出 处:《测控技术》2010年第11期37-40,共4页Measurement & Control Technology
基 金:国家863基金资助项目(2007AA01Z324)
摘 要:提出一种新的KCCA特征融合算法。首先分别提取目标图像的局部特征SIFT和全局Pseudo-Zernike矩特征,并利用K-means算法对局部特征进行预处理;然后利用KCCA将两种特征提取相关特征进行融合,最后将融合特征送入SVM分类器。对遥感飞机图像库做了分类识别的仿真实验。相比于单一特征和CCA特征融合的识别策略,KCCA识别率得到明显提高,理论分析和实验结果证实了该算法具有良好的准确性与可靠性,能够有效提高图像分类识别系统的准确度。A novel feature fusion algorithm based on KCCA is established.Firstly,scale invariant feature transform(SIFT) and Pseudo-Zernike moments are extracted as global features and local features.Then K-means algorithm is applied to normalize the local features to obtain the same form as global features.After the fusion of two features,support vector machine(SVM) is employed as classifier for the multi-class target recognition.Theoretical analysis and experiments on aircraft images results show that KCCA features fusion representations significantly outperform CCA fusion method and single feature approach.Feature fusion of global features and local features based on target image for recognition are proved to be a promising strategy in object recognition field.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.100.195