检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机与数字工程》2010年第11期148-151,共4页Computer & Digital Engineering
摘 要:可能性C均值聚类算法(PCM)对于噪声显示了良好的鲁棒性,但是它没有考虑到像素的空间信息,在含有大量噪声的情况下,PCM算法的分割性能会大大降低。基于PCM算法,提出了一种改进的PCM算法,该算法改进了隶属度函数,新的像素点隶属度更新为其邻域隶属度的几何均值。实验结果显示新的算法能够更有效的分割图像,并显示出良好的抗噪能力。Possibilistic c-means clustering algorithm(PCM) exhibits the robustness to noises,but the pixel spatial information is not considered in this algorithm,in the case of a large number of noises,PCM algorithm will be degraded.Based on PCM algorithm,an improved algorithm is proposed for image segmentation by improving membership function,the new membership of the pixel is updated to the geometric mean value of its neighborhood membership.The experimental results show that the new algorithm can segment the image effectively and properly,and has good performance of resisting noises.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117