决策树属性选择标准的改进  被引量:12

Improvement of attribute selection criterion of decision trees

在线阅读下载全文

作  者:谢妞妞[1] 刘於勋[1] 

机构地区:[1]河南工业大学信息科学与工程学院,郑州450001

出  处:《计算机工程与应用》2010年第34期115-118,139,共5页Computer Engineering and Applications

基  金:河南省自然科学基金(No.0611030100)~~

摘  要:决策树算法是数据挖掘领域的一个研究热点,通常用来形成分类器和预测模型,在实际中有着广泛的应用。重点阐述了经典的ID3决策树算法,分析了它的优缺点,结合泰勒公式和麦克劳林公式提出了新的属性选择标准。改进后的算法通过简化信息熵的计算,提高了分类准确度,缩短了决策树的生成时间,减少了计算成本。实验证明,改进后算法的有效性和正确性。The decision tree algorithm is a research hotspot in the field of data mining,which is usually used form classifiers and prediction models.In practice, it is widely used.This paper focuses on classical ID3 algorithm,analyzes its advantages and disadvantages, combines with Taylor and Maclaurin formula, and then puts forward a new attribute selection criterion of decision trees.This modified algorithm improves the classification accuracy, reduces the generation time of decision trees, and shortens the computational cost by the calculation of the simplified information entropy.Experimental results show effectiveness and correctness of the improved algorithm.

关 键 词:决策树 ID3算法 简化信息熵 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象