关于飞船的动态稳定问题  被引量:7

On the Dynamic Stability of an Orbital Reentry Vehicle

在线阅读下载全文

作  者:张涵信[1] 冉政[1] 呙超[1] 周伟江[2] 

机构地区:[1]中国空气动力研究与发展中心 [2]北京空气动力研究所

出  处:《空气动力学学报》1999年第2期123-129,共7页Acta Aerodynamica Sinica

摘  要:本文研究了以平衡攻角为中心作俯仰振荡的飞船,其动态稳定形态随来流马赫数M∞的变化。设θ(t)是由平衡攻角起算的俯仰振荡角,cm(θ,θ)是作用于飞船上的气动力矩系数,cμ(θ,θ)θ是阻尼力矩(天上飞行时为零),可以证明λ=(cmθ)θ=θ=0+cμ(0,0)=λ(M∞)是决定动稳定形态的重要参数。如果随M∞变化,λ由小于零经λ=0变化到λ>0,则飞船将由稳定的点吸引子状态(即稳定在平衡攻角状态)发展为时间周期吸引子状态(即作周期振荡),对应于λ(M∞)=0的那个马赫数Mcr是出现该Hopf分岔的临界马赫数。本文利用耦合求解俯仰振荡方程和NS方程的数值模拟方法,模拟了这种运动形态。In this paper,the angular motion of an orbital reentry vehicle around static trim angle of attack is investigated using a single degree of freedom method.The angular motion behavior with decrease in Mach number is discussed.Supposing θ(t) is the pitching motion angle from static trim angle of attack, c m(θ,) is the damping in pitch derivatives and c μ(θ,) is the frictional damping moment coefficint which is negative in proportion to θ, we have proved analytically that θ=c m θ==0 +c μ(0,0)=λ(M ∞) is an important parameter to determine the angular motion behavior.If λ changes from negative to positive with decrease in Mach number,then the angular motion will become a limiting cycle oscillation from damping oscillation with a point attractor.The Mach number M ∞ corresponding to λ(M ∞)=0 is the critical one appearing the Hopf bifurcation.In addition,the solution coupling of an angular motion of a vehicle with numerical simulation of NS equations is presented.The agreement between the analysis and numerical simulation is very satisfactory.

关 键 词:动稳定性 极限 HOPF分岔 飞船 N-S方程 

分 类 号:V411[航空宇航科学与技术—航空宇航推进理论与工程] V412.4

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象