检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国空气动力研究与发展中心 [2]北京空气动力研究所
出 处:《空气动力学学报》1999年第2期123-129,共7页Acta Aerodynamica Sinica
摘 要:本文研究了以平衡攻角为中心作俯仰振荡的飞船,其动态稳定形态随来流马赫数M∞的变化。设θ(t)是由平衡攻角起算的俯仰振荡角,cm(θ,θ)是作用于飞船上的气动力矩系数,cμ(θ,θ)θ是阻尼力矩(天上飞行时为零),可以证明λ=(cmθ)θ=θ=0+cμ(0,0)=λ(M∞)是决定动稳定形态的重要参数。如果随M∞变化,λ由小于零经λ=0变化到λ>0,则飞船将由稳定的点吸引子状态(即稳定在平衡攻角状态)发展为时间周期吸引子状态(即作周期振荡),对应于λ(M∞)=0的那个马赫数Mcr是出现该Hopf分岔的临界马赫数。本文利用耦合求解俯仰振荡方程和NS方程的数值模拟方法,模拟了这种运动形态。In this paper,the angular motion of an orbital reentry vehicle around static trim angle of attack is investigated using a single degree of freedom method.The angular motion behavior with decrease in Mach number is discussed.Supposing θ(t) is the pitching motion angle from static trim angle of attack, c m(θ,) is the damping in pitch derivatives and c μ(θ,) is the frictional damping moment coefficint which is negative in proportion to θ, we have proved analytically that θ=c m θ==0 +c μ(0,0)=λ(M ∞) is an important parameter to determine the angular motion behavior.If λ changes from negative to positive with decrease in Mach number,then the angular motion will become a limiting cycle oscillation from damping oscillation with a point attractor.The Mach number M ∞ corresponding to λ(M ∞)=0 is the critical one appearing the Hopf bifurcation.In addition,the solution coupling of an angular motion of a vehicle with numerical simulation of NS equations is presented.The agreement between the analysis and numerical simulation is very satisfactory.
分 类 号:V411[航空宇航科学与技术—航空宇航推进理论与工程] V412.4
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28