检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:雷培源[1] 杨基海[1] 赵章琰[1] 魏代祥[1]
机构地区:[1]中国科技大学电子科学与技术系,合肥230027
出 处:《生物医学工程研究》2010年第2期84-89,105,共7页Journal Of Biomedical Engineering Research
基 金:国家自然科学基金资助项目(30870656)
摘 要:为了提高表面肌电信号(surface electromyography,sEMG)分解的准确率,我们利用空间相邻两通道sEMG信号的信息,采用联合低频小波分解系数作为运动单位动作电位(motor unit action potential,MUAP)活动段的特征,并将自组织特征映射(self-organizing feature map,SOFM)与学习向量量化(learning vectorquantization,LVQ)网络结合起来,完成对MUAP波形的分类。同时为了实现对sEMG信号分解的完整性,采用一种基于递归的模板对准技术分解叠加波形。仿真信号和真实信号的实验表明,本方法具有较高的分解准确率,对于中低收缩力度下sEMG信号的分解十分有效。In order to improve the accuracy of the decomposition of surface electromyography(sEMG),two-channel sEMG signals adjacent to each other in space were decomposed in this paper.First,the combination of low frequency wavelet coefficients were used as the feature of motor unit action potential(MUAP).Then,the Self-Organizing Feature Map(SOFM) neural network and the Learning Vector Quantization(LVQ) network are combined together to accomplish the MUAP waveform classification.Simultaneously,to attain completeness of the decomposition,the wavforms superimposed by several MUAP spikes were decomposed adopting the recursive template alignment technique.Experimental results of simulated and real sEMG signals demonstrate that high decomposition accuracies can be achieved using the proposed method,especially for signals recorded at lower to moderate level of contraction force.
关 键 词:表面肌电信号 分解 叠加波形 神经网络 对准技术
分 类 号:R318[医药卫生—生物医学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30