The Topologically Ordered Field in Ultraproduct  

超积拓扑有序域

在线阅读下载全文

作  者:张翔[1] 孙怀宪 黄小平 

机构地区:[1]西北师范大学

出  处:《Chinese Quarterly Journal of Mathematics》1990年第4期66-71,共6页数学季刊(英文版)

摘  要:This paper can be served as a natural and wide popularization of the theory of non-standard real number. When all the (X_i, +, ·, ≤, )(i∈I) are topologically ordered fields, three structures, algebraic structure+and ·, ordered structure ≤ and topological structure (F)~D respectively, can be established in ultraproduct. It can be proved that is the topologically ordered field (also called the topologically ordered field in ultraproduct). And under proper conditions, every fixed X_ican be embedded in X_i and becomes a proper subtopologically ordered field of .

关 键 词:超积 拓扑有序域 超积拓扑 超滤子 

分 类 号:O189.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象