检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南交通大学交通运输学院,四川成都610031 [2]成都铁路局贵阳南站,贵州贵阳550003
出 处:《西南交通大学学报》2010年第6期932-937,共6页Journal of Southwest Jiaotong University
基 金:国家自然科学基金资助项目(60776824);中央高校基本科研业务费专项资金资助项目(SWJTU09BR134);西南交通大学青年教师科研起步项目的资助(2009Q040)
摘 要:为了提高编组站动态配流与静态配流协调优化算法的收敛速度,根据编组站解体方案树的构造规则,用解体序号矩阵进行解体方案编码,限制解的生成空间,避免了不必要的搜索.结合遗传算法与蚁群算法(genetic and ant algorithm,GAAA)的优势和配流问题的特点,设计了以GAAA为基础的协调优化算法.用遗传算法求出若干组优化解体方案,并生成初始信息素分布,用静态配流蚁群算法筛选出最优解体方案,在此基础上生成配流方案.实例表明:对阶段到发列车数不超过25列的编组站配流问题,本文算法均能在30 s内收敛到最优解或满意解.To improve the convergence performance of optimization algorithms for static and dynamic wagon-flow allocation,a genetic-ant algorithm was proposed,in which unnecessary search was avoided by limiting the solution space and coding schemes with their sequence number matrix following the rules of scheme tree in a marshalling station.An optimization algorithm based on GAAA(genetic and ant algorithm) was designed,which takes the characteristic of wagon-flow allocation problems into consideration and makes use of advantages of genetic and ant algorithms.It uses a genetic algorithm to obtain optimized break-up schemes and generate initial pheromones,and an ant algorithm to select the most optimum break-up scheme to produce a wagon-flow allocation scheme.Results of examples show that the proposed algorithm converges within 30 s for a wagon-flow allocation problem,in which the number of arrival and departure trains does not exceed 25 during an operation period.
分 类 号:U292.16[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.126.145