检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《科技与管理》2010年第6期65-69,共5页Science-Technology and Management
基 金:上海理工大学博士启动基金
摘 要:基于财务困境预测的研究大多局限于截面数据的静态计量,即以T-2,T-3(T代表被特殊处理的年份)的财务指标,运用主成分进行预测,而忽视了公司财务状况的变化过程,因此本文证实了建立基于时序立体数据表的全局主成分分析模型,比经典主成分分析建立的截面模型预测准确度要高。并利用Mann-Whitney U检验对财务指标进行筛选,以我国上市医药公司为研究样本建立预测模型,对其财务状况进行了良好的预测。Most researches on prediction of financial distress mainly focus on static measurement of cross-sectional data, which use principal component analysis to predict financial distress on T-2's or T-3's (T representing the year receiving special treatment) financial indicators, ignoring the process of companies' financial changing. This paper confirms that the accuracy of the model based on cubic time series data (CTSD) and all-round principal component analysis (PCA) is better than the model based on classic principal component analysis from the cross'sectional data. Also it screens the financial indicators by Mann-Whitney U's test and builds a model on the data from pharmaceutical companies and makes a good prediction.
关 键 词:财务困境 Mann—Whitney U检验 时序立体数据表 全局主成分分析
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33