B(LF,ω~2 )-refinability of inverse limits  

B(LF, ω~2 )-refinability of inverse limits

在线阅读下载全文

作  者:XIONG Zhao-hui YANG Ming-quan 

机构地区:[1]Department of Mathematics, Zhejiang Sci-Tech University , Hangzhou 310018, China [2]Department of Mathematics, Jiaxing College, Jiaxing 314001, China

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2010年第4期496-502,共7页高校应用数学学报(英文版)(B辑)

基  金:Supported by the National Natural Science Foundation of China (10671173)

摘  要:Let X be the limit of an inverse system {Xα, παβ, ∧} and and let λ be the cardinal number of A. Assume that each projection πα : X → Xα is an open and onto map and X is A-paracompact. We prove that if each Xα is B(LF, ω^2)-refinable (hereditarily B(LF, ω^2)- refinable), then X is B(LF, ω^2)-refinable (hereditarily B(LF,ω ^2)-refinable). Furthermore, we show that B(LF, ω^2)-refinable spaces can be preserved inversely undcr closed maps.Let X be the limit of an inverse system {Xα, παβ, ∧} and and let λ be the cardinal number of A. Assume that each projection πα : X → Xα is an open and onto map and X is A-paracompact. We prove that if each Xα is B(LF, ω^2)-refinable (hereditarily B(LF, ω^2)- refinable), then X is B(LF, ω^2)-refinable (hereditarily B(LF,ω ^2)-refinable). Furthermore, we show that B(LF, ω^2)-refinable spaces can be preserved inversely undcr closed maps.

关 键 词:Inverse limit B(LF ω^2)-refinability hereditary B(LF ω ^2)-refinability. 

分 类 号:O189.11[理学—数学] TP316.86[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象