检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河海大学水文水资源与水利工程科学国家重点实验室,江苏南京210024 [2]南京水利科学研究院水文水资源与水利工程科学国家重点实验室,江苏南京210029
出 处:《水文》2010年第6期32-36,共5页Journal of China Hydrology
基 金:"十一五"国家科技支撑计划重点项目(2006BAB04A0702;2006BAB14B02);水利部现代水利科技创新项目(XDS2007-04);水利部公益性行业科研专项经费项目(201001002)
摘 要:针对丹江口流域秋汛期(9、10月)径流长期预报,为了消除网络输入的复共线性与网络训练的过拟合现象,将最优子集回归(OSR)和BP神经网络进行耦合,综合考虑训练误差和检验误差,来确定网络训练的最佳训练次数和终止条件,在此基础上提出基于OSR-BP神经网络的径流长期预报技术,并对丹江口秋汛期入库径流量进行了模拟和试报,结果表明:建立的模型稳定性良好,不论模拟还是试报精度均令人满意,特别是对预报年份中的丰枯特征均具有较好的体现。This paper put forward a new method called OSR-BP neural network for long-term runoff forecasting. In order to eliminate input multi-collinearity and the phenomenon of over-fitting of the neural network, the optimal subset regression(OSR) and BP neural network was coupled to an integrated. Meanwhile, the training and testing error was comprehensively considered to determine the best training. On this basis, runoff in September and October in Danjiangkou Reservoir, was simulated from 1956 to 2000, and was predicted from 2001 to 2008 by using OSR-BP neural network. The result shows that the stability of model is good and accuracy is satisfactory whether simulation or prediction, especially for forecasting the characteristics of drought and flood years.
关 键 词:OSR-BP神经网络 径流长期预报 秋汛期 丹江口水库
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229