检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]四川农业大学信息与工程技术学院,雅安625014 [2]电子科技大学自动化工程学院,成都611731
出 处:《农业工程学报》2010年第11期130-135,共6页Transactions of the Chinese Society of Agricultural Engineering
基 金:四川省教育厅自然科学重点项目(08ZA067);四川省教育厅青年基金项目(08zb028)
摘 要:为了提高发动机的故障识别率,设计了一种将B&B算法与广义辨别分析(GDA)相结合的多类特征融合方法。从发动机转子的振动信号中提取出频谱特征集和纹理特征集,用B&B算法删去2类特征集中信息量少的特征,并用GDA和支持向量机(SVM)分类器进行特征融合和分类识别。发动机的转子故障试验结果表明,该方法获得的融合特征包含有更多的类别信息,用于转子故障获得的识别率为98.21%,且不受分类器核参数的影响;而频谱特征、纹理特征输入SVM分类器后获得的故障识别率仅为92.86%和89.29%。该研究为发动机的故障诊断提供了一种有效、实用的特征提取方法。In order to achieve higher fault recognition rate of engine,the paper proposed a multi-class feature fusion method which combined BB algorithm with generalized discriminant analysis(GDA) . Firstly,the spectrum feature set and texture feature set were extracted from the vibration signal of engine rotor. Subsequently,BB algorithm was used to remove the information-lacked features from these feature sets. Finally,the GDA and SVM classifier were used to implement feature fusion and fault recognition. The experiment results indicated that this method can make the fused features contain more category information,and it can reach 98.21% of fault recognition rate for engine rotor fault diagnosis,moreover,it was almost free from the kernel parameter of support vector machine(SVM) . While the spectrum features and texture features were directly inputted to SVM classifier,the fault recognition rate can be reached to only 92.86% and 89.29%,respectively. This study provides an effective and useful feature extraction method for engine fault diagnosis.
关 键 词:发动机 故障诊断 特征提取 广义辨别分析 特征融合
分 类 号:V263.6[航空宇航科学与技术—航空宇航制造工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30