检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蔡国伟[1] 杨德友[2] 张俊丰[1] 刘铖[1]
机构地区:[1]东北电力大学电气工程学院,吉林省吉林市132012 [2]华北电力大学电气与电子工程学院,北京市昌平区102206
出 处:《电网技术》2011年第1期59-65,共7页Power System Technology
基 金:国家自然科学基金项目(50777007)~~
摘 要:广域相量测量系统的应用为基于量测的电力系统稳定性分析提供了有力支持。基于动态量测信息准确地辨识电力系统低频振荡模态参数及振型,对提高电力系统低频振荡的实时监测与控制至关重要。结合经验模态分解与随机子空间辨识算法,基于发电机有功功率的动态量测信息,开展了电力系统低频振荡辨识与分析的研究。该方法能够在较短的时间从含噪信号内提取原系统真实准确的振荡信息,同时能够得到各振荡模式相应的振型,有效地克服Prony算法和自回归滑动平均算法受噪声、系统实际阶数的影响大,以及单一随机子空间辨识算法难以处理非线性、非平稳振荡信号的缺点。测试系统及仿真结果验证了该方法在电力系统低频振荡分析中的可行性。Application of wide area measurement system (WAMS) provides strong support to measurement-based power system stability analysis, so it is of great importance for the improvement of real-time monitoring and control of power system low-frequency oscillation to well and truly identify oscillation modals and oscillation parameters based on the information from dynamic measurement. Combining empirical mode decomposition (EMD) with stochastic subspace identification (SSI) algorithm and according to the dynamically measured information of generator active power, the identification and analysis on power system low frequency are researched. The proposed method can effectively overcome the defect that Prony algorithm and auto-regressive and moving average (ARMA) algorithm are apt to be influenced by noise and actual order number of the system as well as the shortcoming that it is difficult for single stochastic subspace to deal with nonlinear and non-stationary oscillation signals, thus the proposed method can truly and accurately extract original oscillation information from the signals, which contain noise, in a shorter time period, meanwhile corresponding oscillation modals of various low-frequency oscillation modes can be obtained. The feasibility of applying the proposed method to the analysis on power system low-frequency oscillation is verified by both results from testing system and simulation.
关 键 词:低频振荡 动态特性 经验模态分解 随机子空间辨识
分 类 号:TM71[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222