检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐育锋[1] 范炳全[1] 何胜学[1] 董辉[1]
出 处:《交通与运输》2010年第H12期104-107,共4页Traffic & Transportation
基 金:上海市优秀青年教师基金(slg08018);上海市教委科技创新项目(10YS105)
摘 要:合理的确定城市轨道交通行车间隔时间是优化轨道交通运营调度方案的关键。在介绍列车开行间隔影响因素的基础上,根据客流在时间上变化的规律,从轨道交通乘客和轨道交通运营企业双方利益最大化出发,建立以乘客的等车费用、车内费用和运营企业变动费用总和最小为目标的轨道线路行车间隔非线性优化模型,并详细介绍了模型的构建和简化过程。最后用matlab对所给的算例进行了计算和结果的分析,证明了模型的可行性,得到了当行车间隔在(0,6.3]的范围内时,总成本是随着行车间隔的增加而减少,当行车间隔在(6.3,+∞]的范围时,总成本是随着行车间隔的增加而增大。Determining a reasonable headway time of urban rail transit is a key to optimizing scheduling schemes of urban rail transit. On the basis of introducing the influential factors of headways, a Single-rail nonlinear optimization model of headways which minimizes the total of the passengers' waiting costs, the passengers' costs on board and operational enterprise's variable costs is established from maximizing the interests of both passengers and operators according to characteristics of time about passenger travel. The process of establishing and simplifying model is described in details. Finally, a given example is calculated and analyzed by employing matlab, which proves the feasibility of the model. A conclusion is reached that the total cost will decrease while headway time which is within range from 0 to 6.3 increases and will increase while headway time which is within range from 6.3 to +∞ increases.
关 键 词:交通工程 轨道交通 行车间隔时间 非线性规划 MATLAB
分 类 号:U231[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.93.197