数据流滑动窗口连接的卸载策略研究  被引量:1

Load Shedding Strategies on Sliding Window Joins over Data Streams

在线阅读下载全文

作  者:韩东红[1,2] 公丕臻[2] 肖川[2] 周锐[2] 

机构地区:[1]医学影像计算教育部重点实验室(东北大学),沈阳110004 [2]东北大学信息科学与工程学院,沈阳110004

出  处:《计算机研究与发展》2011年第1期103-109,共7页Journal of Computer Research and Development

基  金:国家自然科学基金项目(60773221;60773219;60803026);教育部博士学科点新教师基金项目(20070145112)

摘  要:随着数据流应用系统的快速发展,数据流管理系统对数据库技术提出了巨大挑战.针对数据流上的滑动窗口连接操作,提出一些新的卸载技术,使得系统在过载的情况下卸载连接结果少的元组,从而最大化输出结果.双窗口模型和辅助窗口统计信息的建立保证了预估连接结果的可靠性,同时应用线段树使卸载的判断更加高效.当流速过快、系统处理能力无法与之同步时,通过前端卸载和后端卸载的配合使用达到理想的语义卸载,得到最大子集的连接结果.实验验证该卸载策略的性能好于现有其他方法.With the development of data stream application,data stream management system DSMS brings tremendous challenges in database techniques.As a data stream is continual and time-varying,it requires that DSMS should be adaptive.When the data arrival rate exceeds the system resource limit,the system performance degrades or system may even breaks down.Load shedding is one of the most promising ways to solve the problem.In this paper,several load shedding techniques over sliding window joins are addressed.Firstly,a dual window architectural model including aux-windows and join-windows is proposed.The former is used in the join of two streams,while the latter is used in building the statistics of the estimated join results.With the statistics,an effective load shedding strategy can produce maximum subset of join outputs.In order to accelerate the load shedding process,segment trees have been utilized to reduce the cost on shedding evaluation.Secondly,front-shedding will be cooperated with rear-shedding when streams have high arrival rates,in which the front-shedding adopts random shedding and rear-shedding adopts semantic shedding.Lastly,the experiments based on extensive experiments with synthetic data and real life data show that these new load shedding methods have superb performance of join outputs compared with dominates the existing strategies.

关 键 词:数据流 滑动窗口连接 卸载技术 语义卸载 线段树 

分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象