关于一类二阶非线性差分方程的无界解  被引量:2

On unbounded solutions of a class of second order nonlinear difference equations

在线阅读下载全文

作  者:贾秀梅[1] 晏兴学[1] 董文瑾[2] 

机构地区:[1]河西学院数学系,甘肃张掖734000 [2]陇东学院数学系,甘肃庆阳745000

出  处:《兰州理工大学学报》2010年第6期137-139,共3页Journal of Lanzhou University of Technology

基  金:甘肃省教育厅科研项目(0709-03)

摘  要:研究一类二阶非线性差分方程的无界解.给出此方程的任意无界解序列存在偶(奇)子列趋于∞,奇(偶)子列趋于某一非负数.同时也证明这两种情形下初始条件所在的两平面集被正平衡点的全局稳定流形所分开.The unbounded solutions of a class of nonlinear difference equations were investigated.It was concluded that the subsequence with even(odd) indexed terms in any sequence of unbounded solution would approach to ∞ and the subsequence with odd(even) indexed terms to a nonnegative number.Meantime,it also verified that in these two cases,the two plane sets with initial conditions were separated by the global stable manifold of the positive equilibrium.

关 键 词:竞争映射 全局稳定流形 无界解 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象