应用人工神经网络预测个体血脂异常患病危险度  被引量:2

Application of artificial neural network model to predict the health risk of dyslipidemia in individuals

在线阅读下载全文

作  者:王重建[1] 李玉倩[2] 胡东生[1] 张卫东[1] 杨少伟[3] 郗园林[1] 薛源[1] 李文杰[1] 

机构地区:[1]郑州大学公共卫生学院流行病与卫生统计系,郑州450001 [2]郑州大学药学院临床药学系 [3]河南省洛阳市新安县疾病预防控制中心

出  处:《卫生研究》2011年第1期43-45,共3页Journal of Hygiene Research

基  金:国家"十一五"科技支撑计划项目(No.2006BAI01A01);中国博士后科学基金资助项目(No.20100471003)

摘  要:目的建立个体血脂异常患病危险度的预测模型,探讨并评价预测个体血脂异常的新方法。方法选择8914例社区居民流行病学调查资料,按3∶1分为训练集(6686例)与检验集(2228例),分别用于筛选变量、建立预测模型及对模型的检测和评价。应用人工神经网络(ANN)和logistic回归分别建立血脂异常预测模型,受试者工作曲线(ROC)评价预测模型的优劣。结果 ANN预测模型的特异度(64.79%)较低,但灵敏度(94.86%)、约登指数(59.65%)、一致率(81.23%)均优于logistic回归预测模型(特异度=77.49%、灵敏度=53.51%、约登指数=31.00%、一致率=81.23%);ANN预测模型ROC曲线下面积(Az=0.824±0.009)明显大于logistic回归预测模型(Az=0.655±0.012)(P<0.05)。结论在预测个体血脂异常方面,ANN模型较logistic回归模型具有更好的预测判别效能。Objective To establish models to predict the risk of dyslipidemia in individuals,and then to explore and evaluate new prediction models.Methods The epidemiological survey data of 8914 community residents was selected and divided into a trained group(6686 cases) and a test group(2228 cases).Artificial neural network(ANN) and Logistic regression analysis were used to establish prediction models,and then the results were evaluated by receiver operating characteristic(ROC) curve.Results The specificity(64.79%) of AAN model forecasting the results of test group was lower,but the sensitivity(94.86%),Youden’s index(59.65%) and consistency rate(81.23%) of AAN model was higher than the Logistic regression predicted model(specificity = 77.49%,sensitivity = 53.51%,Youden’s index = 31.00% and consistency rate = 81.23%,respectively).Moreover,the area under ROC curve of ANN prediction model(Az = 0.824 ± 0.009) was significantly bigger than the Logistic regression prediction model(Az = 0.655 ± 0.012).Conclusion The discrimination performance of ANN model is better than Logistic regression in the prediction of health risk of dyslipidemia in individuals.

关 键 词:血脂异常 人工神经网络 LOGISTIC回归 预测模型 

分 类 号:R181.37[医药卫生—流行病学] R54[医药卫生—公共卫生与预防医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象