检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京航空航天大学航空科学与工程学院固体力学研究所,北京100191
出 处:《机械强度》2011年第1期111-119,共9页Journal of Mechanical Strength
摘 要:引入描述双变量损伤条件下的本构关系,进而以热力学原理为基础,引入损伤驱动力,建立损伤演化准则。构建一般情况下的时间型损伤演化方程和循环型损伤演化方程。利用分离变量方法再对损伤演化方程积分,得到光滑试件在恒幅应变交变载荷作用下寿命预估方法。根据损伤力学守恒积分原理,得到有缺口试件在恒幅应变交变载荷作用下寿命预估方法。利用上述寿命预估方法,由KT=1与KT=3的标准试件中值疲劳试验数据确定损伤演化方程中的材质参数。在此基础上给出不同KT下的理论中值疲劳曲线,为采用损伤力学方法来描述构件的疲劳寿命提供一种可行的方法。Constitutive relation of bi-variable damage was introduced.Based on irreversible thermodynamics,damage driving force was introduced and damage evolution criterion was constructed.Furthermore,damage evolution equation of time form and cycle form was constructed.The fatigue life prediction method for smooth specimen under the repeated loading with constant strain amplitude was obtained by the method of variables separation.By the theory of conservative integral in damage mechanics,the fatigue life prediction method for notched specimen under the repeated loading with constant amplitude was obtained by numerical method.Using these methods,the material parameters in the damage evolution equation are obtained by the mean value experimental fatigue lives of standard specimens with KT = 1 and KT = 3.On the basis of above methods,theoritical mean fatigue curves for different values of KT are drawn.This research provides the possibility for predicting the fatigue lives of structure members through the methodology of damage mechanics.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38