Hamilton体系下压电材料层合板特征值灵敏度分析  被引量:1

SENSITIVITY ANALYSIS OF EIGENVALUE FOR PIEZOELECTRIC IN HAMILTON SYSTEMS

在线阅读下载全文

作  者:卢翔[1] 李顶河[1] 徐建新[1] 卿光辉[1] 

机构地区:[1]中国民航大学航空工程学院,天津300300

出  处:《机械强度》2011年第1期143-147,共5页Journal of Mechanical Strength

基  金:天津市自然科学基金资助(07JCYBJC02100)~~

摘  要:在Hamilton体系下,基于区间B(B-spline wavelet on the interval)-样条小波有限元法研究压电材料特征值的灵敏度分析问题,推导压电材料特征值响应灵敏度系数的控制方程。利用二分法求得压电材料层合板前4阶特征值对材料密度的灵敏度系数,并与有限差分法所得结果相比较,证明所提方法的可靠性。结果表明,在Hamilton体系下求解特征值的灵敏度系数是可行的。In the structural shape optimization (SSO) procedures,one of the main difficulties is to perform an accurate sensitivity analysis for the structural response with respect to some parameters.At present,the analytical,semi-analytical and finite difference methods are the most commonly used.In Hamilton systems,the sensitivity analysis of eigenvalue response was studied for piezoelectric laminated plates,and the governing equation of sensitivity coefficients of eigenvalue for piezoelectric laminated plates was derived based on B-spline wavelet on the interval (BSWI) wavelets element methods in the present work.So the sensitivity coefficients of eigenvalue would be obtained in Hamilton system,while it just would be gained in Lagrange system before.Sensitivity coefficients of eigenvalue of first 4 ranks with respect to density are obtained by bisection mehtod.And the numerical results of bisection mehtod are compared with that of the finite difference methods.The reliability of this eigenvalue sensitivity analysis method which based on wavelets and Hamilton systems is proved by this compare.

关 键 词:BSWI(B-spline WAVELET on the interval)小波 特征值 压电材料 灵敏度分析 HAMILTON体系 

分 类 号:O326[理学—一般力学与力学基础] TB381[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象