检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华中科技大学计算机学院,武汉430074 [2]华中科技大学软件学院,武汉430074
出 处:《计算机应用研究》2011年第2期525-528,共4页Application Research of Computers
摘 要:在支持向量机(support vector machines,SVM)中,如何衡量SVM的分类能力,最小化风险泛函是一个重要的指标。根据支持向量机小样本特点,给出了支持向量机分类能力的一个量化标准:最优超平面的可靠度β。详细讨论了β的下界和置信区间,并给出了在实际应用中,如何根据样本数据估计β的下界和置信区间。实验也证明了β的下界估计和置信区间的合理性、有效性。In the support vector machine,minimize the risk functional is an important indicator to measure the classification ability.According to characteristics of SVM,this paper presented a quantitative criteria of the classification based on SVM:β,which was the reliability of the optimal hyperplane.Discussed the statistical properties of β,and presented a method of the estimation on the lower bound and confidence interval of β.The results of simulation show the rationality and effectiveness of the estimation of β.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38