基于支持向量回归的棉铃虫蛹发育历期估测  

Estimating pupal developmental duration of Helicoverpa armigera(Lepidoptera:Noctuidae) with support vector regression

在线阅读下载全文

作  者:谭显胜[1,2,3] 王志明[1,2] 李兰芝[1] 袁哲明[1,2] 

机构地区:[1]湖南农业大学生物安全科学技术学院,长沙410128 [2]湖南省作物种质创新与资源利用重点实验室,长沙410128 [3]湖南人文科技学院生命科学系,湖南娄底417000

出  处:《昆虫学报》2011年第1期83-88,共6页Acta Entomologica Sinica

基  金:湖南省杰出青年基金(10JJ1005);高等学校博士点基金(200805370002);湖南省研究生科研创新项目(CX2009B151)

摘  要:温度与发育速率关系模拟是昆虫学研究的一个重要内容,传统基于经验风险最小的非线性参数模型(Logan模型、Lactin模型和王氏模型)存在诸多弊端。本文基于结构风险最小的改进支持向量回归(SVR)研究温度与棉铃虫Helicoverpa armigera蛹发育历期关系。结果表明:与传统非线性模型相比,SVR模型性能优异;基于全部92个样本,SVR模型拟合和留一法预测的决定系数R^2分别为0.998和0.996,估测的蛹期三基点温度更可信。从全部样本中依温度均匀选取部分样本实施独立预测,当训练集为20个样本时,SVR模型独立预测的R^2为0.981,优于传统非线性模型中独立预测最佳的Lactin模型(R^2=0.958);当训练集进一步减少到12个样本时,SVR模型的R^2仅降低到0.964,而传统非线性模型均已不适用。结果提示SVR模型在小样本情况下较传统非线性模型优势明显,在昆虫发育历期估测建模中有应用前景。Simulating the relationship between temperature and developmental rate is an important content in entomology research.The traditional non-linear models,including Logan model,Lactin model and Wang model,however,have the disadvantage of utilizing information incompletely,over-fitting,etc.In the current paper,an improved support vector regression(SVR) model has been developed to analyze the relationship between temperature and pupal development of the cotton bollworm(Helicoverpa armigera).The results showed that the SVR had a higher performance on model-fitting and predict ability than other non-linear models based on the observed data(92 samples),with determination coefficients(R^2) of 0.998 and 0.996, respectively.Estimation of the three fundemental points of temperature of the pupal stage with the improved SVR was more credible.On the basis of 20 samples,the Lactin model had the highest performance with R^2 of 0.958 among the mentioned traditional non-linear models,but it was still obviously lower than that of the improved SVR with R^2 of 0.981.When the number of samples was reduced to 12,the R^2 of SVR slightly declined to 0.964, while the traditional non-linear models were not applicable to the independent prediction any more.The results suggest that the improved SVR is superior in dealing with small sample set than traditional non-linear models, and the improved SVR may be useful in forecasting outbreaks of pests and artificial breeding of insects.

关 键 词:棉铃虫 支持向量回归 蛹期 温度 发育历期 非线性模型 

分 类 号:Q965[生物学—昆虫学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象