检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西华大学电气信息学院,四川成都610039 [2]西南交通大学信息科学与技术学院,四川成都610031
出 处:《西南交通大学学报》2011年第1期76-83,共8页Journal of Southwest Jiaotong University
基 金:国家自然科学基金-中国工程物理研究院联合基金资助项目(10876029);国家863计划资助项目(2009AA01Z230)
摘 要:为解决现有粒子群优化算法进化过程中"早熟"的问题,提出了一种改进的粒子群优化算法HSPSO.算法采用多子群分层策略,以提高收敛速度和优化精度.为求解工程项目的综合优化问题,建立了工期-成本-质量的数学优化模型和多目标优化模型.通过实例对标准粒子群优化算法(SPSO)和差分进化(DE)算法进行了比较,并采用HSPSO算法进行多目标优化.最后,用枚举法验证了模型的合理性和算法的有效性.与已有研究相比,HSPSO算法能在种群规模较小(20个粒子)的情况下,快速找到满意的解(平均迭代次数不超过20次).A modified PSO(particle swarm optimization) algorithm—hierarchical subpopulation PSO(HSPSO) was proposed to avoid the premature phenomenon of the PSO algorithm during evolution.By using the strategy of subpopulation hierarchy,the algorithm can improve the convergence speed and accuracy.For the synthesis optimization of a construction project,mathematical optimization models and a multi-objective optimization model of construction time,cost and quality were established.In a case study,the standard PSO(SPSO) and differential evolution(DE) algorithms were compared,and the HSPSO algorithm was utilized to its synthesis optimization.In addition,the exhaustive enumeration was used to verify the effectiveness of these models and the feasibility of the HSPSO algorithm.The result shows that the HSPSO algorithm can quickly obtain satisfied results with average iterative times of less than 20 under the condition of a swarm size of 20 particles.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.79