METRIC ENTROPY OF HOMEOMORPHISM ON NON-COMPACT METRIC SPACE  

METRIC ENTROPY OF HOMEOMORPHISM ON NON-COMPACT METRIC SPACE

在线阅读下载全文

作  者:周云华 

机构地区:[1]College of Mathematics and Statistics, Chongqing University

出  处:《Acta Mathematica Scientia》2011年第1期102-108,共7页数学物理学报(B辑英文版)

基  金:supported by the Fundamental Research Funds for the Central Universities (CDJZR10100006)

摘  要:Let T : X → X be a uniformly continuous homeomorphism on a non-compact metric space (X, d). Denote by X* = X ∪ {x*} the one point compactification of X and T * : X* → X* the homeomorphism on X* satisfying T *|X = T and T *x* = x*. We show that their topological entropies satisfy hd(T, X) ≥ h(T *, X*) if X is locally compact. We also give a note on Katok’s measure theoretic entropy on a compact metric space.Let T : X → X be a uniformly continuous homeomorphism on a non-compact metric space (X, d). Denote by X* = X ∪ {x*} the one point compactification of X and T * : X* → X* the homeomorphism on X* satisfying T *|X = T and T *x* = x*. We show that their topological entropies satisfy hd(T, X) ≥ h(T *, X*) if X is locally compact. We also give a note on Katok’s measure theoretic entropy on a compact metric space.

关 键 词:Topological entropy metric entropy non-compact metric space one point compactification 

分 类 号:O189.11[理学—数学] O189.1[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象