检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江大学计算机科学与工程学系,浙江杭州310027 [2]中国计量学院计算机科学与技术系,浙江杭州310018
出 处:《浙江大学学报(工学版)》2010年第12期2251-2256,2268,共7页Journal of Zhejiang University:Engineering Science
基 金:国家自然科学基金资助项目(60703001);国家"973"重点基础研究发展计划资助项目(2009CB320804);广东省教育部产学研结合资助项目(2010B090400193);浙江省教育厅科研资助项目(Y200702635)
摘 要:针对三维模型检索系统提高准确率、减少几何特征和人类语义丰富性之间的"语义鸿沟"等问题,提出一种基于高斯过程的语义分类和检索新方法.该方法采用一种统计2个采样点相对质心向量夹角的AC2直方图新特征,与形状分布的D2特征组合成低层特征,使用高斯过程进行三维模型语义分类的监督学习,计算测试模型的语义类概率预测分布,建立低层特征和查询概念之间的联系;使用语义距离和不相似度计算方法进行检索排序.实验结果表明:与已有的某些监督学习的方法相比,多类的测试模型进行语义分类的准确率明显得到提升,检索中能体现语义概念,检索性能也得到提高.A novel 3D model retrieval and semantic classification method using Gaussian processes was proposed to improve the performance of 3D model retrieval systems,and reduce the'semantic gap' between the shape features and the richness of human semantics.A new type of feature named AC2using histogram of angle between the centroid and pairs of random points was proposed,which combined D2of shape distribute as low-level feature.The Gaussian processes were used for 3D model semantic classification as supervised learning,and the predictive distribution of the semantic class probability was computed for associating low-level features with query concepts.The method ranked models by dissimilarity measure incorporating the semantic distance and the shape feature distance.Experimental results showed that the multi-class 3D model classification accuracy using the proposed method is significantly higher than those of other supervised learning methods,and the retrieval can capture the query model's semantics,so the performance is improved.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222