多形态稀疏性正则化的图像超分辨率算法  被引量:25

Multimorphology Sparsity Regularized Image Super-Resolution

在线阅读下载全文

作  者:孙玉宝[1,2] 韦志辉[1] 肖亮[1] 张峥嵘[1] 吕战强[2] 

机构地区:[1]南京理工大学计算机科学与技术学院模式识别与智能系统实验室,江苏南京210094 [2]中国人民解放军总参谋部第六十研究所训练科研处,江苏南京210016

出  处:《电子学报》2010年第12期2898-2903,共6页Acta Electronica Sinica

基  金:国家自然科学基金(No.61071146;No.60672074;No.60802039);国家高技术研究发展计划(863计划)课题(No.2007AA12Z124);高等学校博士点专项基金(No.200802880018);江苏省自然科学基金(No.SBK201022367);南京理工大学研究基金(No.2010ZDJH07)

摘  要:如何设计更加高效并能保持图像几何和纹理结构的多幅图像超分辨模型和算法是目前该领域有待解决的难点问题.针对图像的几何、纹理结构形态,分别建立符合类内强稀疏而类间强不相干的几何结构和纹理分量稀疏表示子成份字典,形成图像的多形态稀疏表示模型,进而提出一种新的基于多形态稀疏性正则化的多帧图像超分辨凸变分模型,模型中的正则项刻画了理想图像在多成份字典下的稀疏性先验约束,保真项度量其在退化模型下与观测信号的一致性,采用交替迭代法对该多变量优化问题进行数值求解,每一子问题采用前向后向的算法分裂法进行快速求解.针对可见光与红外图像序列进行了数值仿真,实验结果验证了本文模型与数值算法的有效性.It is difficult to design an effective image super-resolution model and algorithm that can preserve the geometric structures and texture.Two incoherent geometry and texture sub-dictionaries are constructed,which can provide sparse representations of geometry and texture structures respectively.Thus,a multi-morphology sparse representation model is established.Furthermore,a convex variational model is proposed for multi-frame image super-resolution with multi-morphology sparsity regularization.The regularization term constrains the underlying image to have a sparse representation in a multi-component dictionary.The fidelity term restricts the consistency with the measured image in terms of the data degradation model.An alternate minimization iteration algorithm is proposed to solve it numerically and proximal forward-backward operator splitting method is adopted for each sub-problem.Numerical experiments for optics and infrared images are presented and the experimental results demonstrate that our super-resolution model and numerical algorithm are both effective.

关 键 词:超分辨率 稀疏表示 多成份字典 多结构形态 前向后向算子分裂 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象