实时交通流预测的并行SVR预测方法  被引量:1

A parallel SVR approach to real-time traffic flow forecasting

在线阅读下载全文

作  者:杨际祥[1] 谭国真[1] 王凡[1] 田珠[1] 潘东[1] 

机构地区:[1]大连理工大学计算机科学与技术学院,辽宁大连116024

出  处:《大连理工大学学报》2010年第6期1035-1041,共7页Journal of Dalian University of Technology

基  金:"九七三"国家重点基础研究发展计划资助项目(2005CB321904);国家自然科学基金资助项目(60373094)

摘  要:提高交通流预测的精度和实时性是智能交通系统(ITS)应用发展的一个重要问题.与广义神经网络(GNN)方法相比,支持向量回归(SVR)方法应用于交通流预测理论优势得以实现的前提是选取合适的回归参数.分析、讨论了简单而实际的直接从训练集中选取SVR参数的方法,给出了一个大规模路网交通流SVR预测模型和集群环境下的一种贪婪负载均衡并行算法(G-LB).实验结果证明了基于G-LB算法的并行SVR方法(GLB-SVR)可获得比并行的GNN方法(P-GNN)更好的预测精度和实时性.Accurate and real-time traffic flow forecasting is a key problem to the application development of intelligent transportation systems(ITS) .Comparing with generalized neural network(GNN) method,the theoretical advantage of applying support vector regression(SVR) method to traffic flow forecasting highly depends on good parameter selection.Simple yet practical approach to SVR parameters setting directly from the training set is analyzed and discussed,and a traffic flow SVR forecasting model for large-scale road network and a greedy load balancing(G-LB) algorithm in cluster environment are proposed.Experimental results demonstrate that it can better satisfy real-time and accurate demands of traffic flow forecasting using parallel SVR approach based on G-LB(GLBSVR) algorithm than using parallel GNN(P-GNN) method.

关 键 词:并行计算 负载均衡 交通流预测 支持向量回归(SVR) 广义神经网络(GNN) 

分 类 号:TP301[自动化与计算机技术—计算机系统结构] U491[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象