检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆邮电大学计算机科学与技术学院,重庆400065
出 处:《重庆邮电大学学报(自然科学版)》2011年第1期91-95,共5页Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基 金:The National Natural Sciences Foundation of China(60873186)
摘 要:应用一种全局搜索方法即人工鱼群算法(artificial fish swarm algorithm,AFSA)来优化支持向量基(support vector machines,SVM)的参数,并应用于图像分类。基于分类,初始化惩罚系数C和核函数参数δ2的范围;利用AF-SA来优化SVM的参数,并得到合适的值;最后,把参数优化后的SVM应用于分类。实验结果表明,与C-SVC和交叉验证法相比,其分类结果优于其它两种方法,因此AFSA-SVM方法有更好的准确性和鲁棒性。In this paper, artificial fish swarm algorithm (AFSA } that is a global search method to optimize the parameters of support vector machines ( SVM ) is applied and modified for image classification. In the classification, firstly, the range of parameters of punishment C and kernel function 62 are initialized ; secondly, AFSA is applied to optimize the parameters to gaiu suitable values; finally, SVM is used for classification, in which the parameters are optimized. By comparing with C-SVC and cross-validate methods, the result excelled another two methods, so the studied algorithm of AFSA-SVM is more accuracy and robust.
关 键 词:人工鱼群算法(AFSA) 支持向量基(SVM) C—SVC 交叉验证法
分 类 号:TP301.5[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.198